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Abstract

The large-strain tensile behavior of polycarbonate and polycarbonate filled with several volume fractions ðf Þ of rubber particles is studied

via an optical technique. Digital image correlation is used to determine, in two dimensions, the local displacement gradients and full-field

displacements during a uniaxial tension test. Full-field strain contours, macroscopic true stress–strain behavior, and local volumetric strain

are reduced from the raw test data. Full-field strain contours exhibit a decreasing degree of localization with increasing f : The true stress–

strain results show a decrease in modulus, yield stress, post-yield strain softening, and subsequent strain hardening with increasing f : The

volumetric strain decreases with increasing f as well. In the case of the neat polymer, comparisons are made to a three-dimensional finite

element simulation.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

During a uniaxial tension test, most engineering polymers

begin to deform inhomogeneously (‘neck’) at relatively

small strains. Once necking begins, traditional extensometry

techniques are rendered virtually useless. A contacting

extensometer measures only the average strain over the gage

length. Until the neck stabilizes and propagates the length of

the specimen, however, the strain varies with axial position

on the specimen. Any technique that seeks to determine the

local true strain behavior must either use an infinitesimally

small gage length or calculate the gradient in displacement

in the axial direction. Furthermore, even in their neat form,

most polymers exhibit a significant degree of dilatation

during tensile extension. The deviation from incompressi-

bility is attributed to crazing in glassy polymers and to

crystal fragmentation in semi-crystalline polymers. In filled

polymers, the debonding of rigid particulate fillers or the

cavitation of elastomer fillers further weakens the assump-

tion of incompressibility. The determination of the true

stress at a given axial location on the specimen therefore

requires knowledge of the lateral strains at that point. Strains

must be measured not only in the axial direction but also in

one (if transversely isotropic deformation may be assumed)

or both lateral directions.

There have been numerous attempts to characterize the

large-strain tensile behavior of polymers. The most

successful endeavors used some type of video system to

capture images of the specimen at various stages of

extension. Buisson and Ravi-Chandar [1] applied a finely

spaced grid to the surface of rectangular bar-type poly-

carbonate (PC) specimens. They calculated the axial and

lateral displacement gradient at points along the specimen

centerline by fitting polynomials to the grid line displace-

ments. The true stress at the same points was obtained from

a stress-optic method. In all of the studies described below,

the true stress was calculated from the total load and the

measured or assumed current cross-sectional area. Assum-

ing incompressibility to obtain the axial strain, G’Sell et al.

[2] calculated the true stress–strain behavior of several

glassy and semi-crystalline polymers by using an optical

diametral transducer to measure the instantaneous

minimum diameter of hourglass-shaped cylindrical speci-

mens. Nazarenko et al. [3] used a similar technique on round

polycarbonate bars but applied a fine grid to the surface and

also measured the behavior at points away from the site of

neck initiation. Haynes and Coates [4] measured axial strain

0032-3861/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.polymer.2004.01.068

Polymer 45 (2004) 2665–2684

www.elsevier.com/locate/polymer

* Corresponding author. Tel.: þ1-617-253-2342; fax: þ1-617-258-8742.

E-mail address: mcboyce@mit.edu (M.C. Boyce).

http://www.elsevier.com/locate/polymer


as a function of axial position in polypropylene and a

styrene butadiene elastomer by tracking the axial position of

transverse grid lines printed on the surface of rectangular

bar-type specimens. The true axial strain was taken directly

from the relative displacement between neighboring grid

lines, and the true axial stress was then calculated by

assuming constant volume deformation. Gloaguen and

Lefebvre [5] calculated the true stress–strain and volu-

metric strain behavior of nylon and polypropylene by

measuring the separation of pairs of ink marks on

rectangular bar-type specimens. Two cameras were used

to measure simultaneously the strains in all three directions.

Homogeneous deformation between the ink marks was

assumed. G’Sell et al. [6] later developed an optical

technique for use on rectangular bar-type specimens

which did not require the assumption of constant volume

and also allowed for a degree of inhomogeneous axial

deformation. The locations of seven dots on the surface of

the specimen were used to calculate the true axial and lateral

strains at a particular axial location. Assuming a transver-

sely isotropic strain tensor, they calculated the true stress–

strain and volumetric strain behavior of polyethylene

terephthalate and high-impact polystyrene.

The experimental technique utilized in this study, digital

image correlation (DIC), has advantages over all of the

previously described techniques. DIC is simply the process

of matching subsets of pixel gray-value patterns from one

image to another. When DIC is applied to a mechanical test,

an image of the deformed specimen is correlated to an

image of the undeformed specimen, and the in-plane

displacements and the displacement gradient are calculated

for one or more pixel subsets. From the displacement field

or the displacement gradient, any type of strain measure

may be calculated. With all in-plane strain components

known, the assumption of incompressibility made by

several afore-mentioned authors is not necessary. A

procedure will be introduced which enables measurement

of the strain in the third dimension as well. The strain

calculation allows for large strain gradients and, hence,

works well on materials that deform inhomogeneously.

Furthermore, by performing the analysis on numerous

subsets, one can construct full-field contours of strain and

examine behavior as a function of position.

Laraba-Abbes et al. [7] used DIC to measure the nominal

stress-stretch behavior of carbon black-filled natural rubber.

During a tension test, they illuminated the rectangular bar-

type specimen surface with a laser and captured images of

the reflected light with a charged couple device (CCD)

camera. Due to the imperfection of the specimen surface,

the reflected light exhibited a spatial variation in intensity or

‘speckle’ effect. Forming a digital signature of the specimen

surface, the distribution of light detected at the camera

sensor is what is known as a ‘speckle pattern’. Starting with

the undeformed image, Laraba-Abbes et al. incrementally

obtained the in-plane displacement field by correlating

subsets of the speckle pattern from one image to the next.

They calculated the in-plane axial and transverse stretches

by differentiating linear functions fit to subsets of the

displacement field.

In this study, the DIC method is used to measure, in two

dimensions, the local displacement gradient and the full-

field displacements during a standard uniaxial tension test.

A random speckle pattern is applied with ink to the surface

of rectangular bar-type PC specimens. A CCD camera

connected to a computer acquires digitized images of the

specimen surface at regular intervals during a tensile test.

The in-plane displacement gradient and displacements are

calculated in the Lagrangian description by correlating

subsets in the undeformed (reference) image to subsets in

each deformed image. From the raw displacement data, true

stress–strain and volumetric strain behavior and full-field

strain contours are constructed.

The outline of the paper is as follows: in Section 2, the

procedure is described. The experimental technique and

DIC algorithm is briefly discussed, and the method for

calculating the large-strain measure and the true stress from

the raw correlation (displacement) data and macroscopic

load is then given. The finite element model of the neat PC

uniaxial tension test is described as well. In Section 3, the

experimental results are presented, and, at the same time,

the algorithms for determining the true stress–strain and

volumetric strain behavior are developed and validated by

drawing comparison to the results of the finite element

simulation. In order to illustrate the general features of

polymer deformation, the section begins with full-field

contours of strain for neat PC and compares the experimen-

tal results to the simulation results. Next, in Section 3.2, the

local axial and lateral strains in neat PC are investigated as a

function of time and position on the tensile specimen.

Finding that the strains are a strong function of lateral

position, we define macroscopic quantities to represent the

true axial and lateral strains. In Section 3.3, the spatial

variation of the true stress–strain and axial strain rate

history is investigated on the neat PC specimen. Data

reduction schemes are developed to extract the material true

stress–strain behavior from the raw specimen data. The

simulation emulates the experimental conditions and

verifies the efficacy of the data reduction strategies.

Similarly, in Section 3.4, the simulation indicates how

most accurately to calculate the volumetric strain in neat PC.

Finally, in Section 3.5, the true stress–strain, volumetric

strain and full-field strain results for rubber-filled PC at

three different volume fractions of modifier are presented

and discussed. The paper concludes with a short discussion

in Section 4.

2. Procedure

2.1. Sample preparation

The material used in this study was a polycarbonate,
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trade name Makrolon 2608, supplied by Bayer Corporation

(Pittsburgh, PA). The homopolymer and blends containing,

by volume, 5%, 15%, and 25% core-shell rubber particles

were tested. The particles, supplied by Rohm and Hass, had

a methyl-methacrylate/styrene shell and a polybutadiene

core. Johnson [8] reported the particle diameters to range

from 0.3 mm to 0.8 mm with a mean of 0.52 mm. The neat

polymer and blends were injection molded into

12.7 mm £ 12.7 mm £ 127 mm bars. Tensile bars with

gage section dimensions 19.05 mm £ 7.62 mm £ 3.20 mm

were machined from the square bars.

2.2. Testing procedure

All tensile tests were conducted on an Instron model

5582 screw machine at a constant nominal strain rate of

0.005 s21. A random speckle pattern was applied to each

specimen with either a Sanford sharp tip marker or a

Badger airbrush filled with India ink. The pattern density

was maximized under the constraint that individual

speckles should generally not overlap. The minimum

characteristic speckle size was three pixels. High

resolution (1280 pixels £ 1024 pixels), 12-bit images

were recorded at a frequency of 1 Hz with a Qimaging

Retiga 1300 CCD camera equipped with a 200 mm

Canon f/4.0 Canon lens and, in some cases, a Nikon

200 mm extension. The camera was placed at a distance

of 1.0 m from the specimen. Fig. 1 shows four images

captured without the lens extension. The load at the time

of each image acquisition was recorded via a National

Instruments DAQ board. It was not assumed that the

specimens would deform isotropically in the two lateral

directions. Therefore, as illustrated in Fig. 2, companion

tests were viewed from two orientations; the ‘front’ view

captured the deformation of the thick lateral dimension

ðxÞ, and the ‘side’ view captured the deformation of the

thin lateral dimension ðzÞ:

2.3. Strain measurement

The images were analyzed with a DIC algorithm

developed and implemented by Correlated Solutions

Incorporated (CSI)1. To correlate the deformed image to

the reference image, the area of interest in each image is

divided into small square subsets. The discrete matrix of the

pixel gray level values in each subset forms a unique pattern

Fig. 2. Specimen geometry and definition of views and coordinate

directions.

Fig. 1. Front view images of a neat PC tensile bar: (a) reference image, (b)–(d) deformed images.

1 West Columbia, SC 29169, USA. Tel.: þ1-803-926-7272; url: www.

correlatedsolutions.com.
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within the image. The second-order shape functions
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map the positions within the reference subset to positions in

the image after deformation. As illustrated in Fig. 3, uc and

vc are the displacements of a point at reference image

coordinates ðxc; ycÞ: Here, x and y are the reference

coordinates of arbitrary points within the subset centered

at ðxc; ycÞ: The coefficients of the polynomial are optimized

by minimizing the normalized cross-correlation coefficient

[9], r; defined for an n pixel £ n pixel subset as

r ¼

Xn

i¼1

Xn

j¼1

I1ðxi; yjÞI2ðxi þ u; yj þ vÞ

Xn

i¼1

Xn

j¼1

ffiffiffiffiffiffiffiffiffiffi
I2
1ðxi; yjÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
2 ðxi þ u; yj þ vÞ

q ; ð3Þ

where I1 and I2 denote the gray level intensity patterns of the

reference and deformed images, respectively. Its insensi-

tivity to changes in lighting makes the normalized cross-

correlation coefficient an excellent similarity measure. The

displacement gradient at the subset center is calculated by

evaluating the derivatives ›u=›x; ›u=›y; ›v=›x; and ›v=›y at

ðx; yÞ ¼ ðxc; ycÞ: This algorithm was used to determine the

local strain history at individual points on the specimen.

Image resolution was 37.5 (‘low’ magnification) for all front

view tests and 75 pixels/mm (‘high’ magnification via the

200 mm lens extension) for all side view tests. The subsets

measured 75 pixels £ 75 pixels. For reference, Fig. 3 shows

a subset of size 75 pixels £ 75 pixels at a resolution of 75

pixels/mm.

2.3.1. Local strain calculation

Local lateral vs. axial strain and volumetric strain

behaviors were calculated directly from the derivatives of

the second-order mapping function described above.

Formally, the derivatives define the two-dimensional

displacement gradient,

H ¼

›u

›x

›u

›y

›v

›x

›v

›y

0
BBB@

1
CCCA; ð4Þ

with

H ¼ F 2 I; ð5Þ

where F is the deformation gradient. F is defined as

I þ Grad u(x), where x is the position vector of a point in

the reference configuration, and u(x) is the displacement of

that point. From the polar decomposition, F ¼ VR, the true

strain in the spatial configuration, or Hencky strain, E, is

calculated as

E ¼ ln V; ð6Þ

where V is the left stretch tensor and R is the rotation tensor.

The volumetric strain Ekk is defined as

Ekk ¼ ln
V

Vo

¼ lnðdetFÞ ð7Þ

where V is the current volume and Vo is the original volume.

2.3.2. Full-field strain calculation

Contours of true axial and shear strain were constructed

from the displacement fields. Within the areas of interest,

correlations were performed on pixel subsets of size 75

pixels £ 75 pixels at a step size of two. The displacement of

the center point of each subset was calculated and stored.

The displacement of every second pixel in the area of

interest was thus known. The raw full-field displacement

data was then imported into MATLAB where the strains

were calculated from least-squares approximations of the

displacement field. Subsets of the displacement field of size

11 points £ 11 points were taken at a step size of five. A

temporary ð~x; ~yÞ coordinate system was translated to the

Fig. 3. Illustration of speckle pattern subsets and correlation procedure.

Reference coordinates denoted by ðx; yÞ; and deformed coordinates denoted

by ðX; YÞ:
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center of each displacement field subset. Second-order

polynomial expressions for uð~x; ~yÞ and vð~x; ~yÞ were then fit to

each displacement field subset. Similar to the procedure

described in Section 2.3.1, the displacement gradient H was

calculated from the partial derivatives ›u=›~x; ›u=›~y; ›v=›~x;

›v=›~y evaluated at each subset center. The logarithmic

strain, E ¼ ln V, was then calculated and plotted to

construct the full-field contours.

2.3.3. Error analysis

There are sources of error in the data acquisition, image

correlation, and strain calculation procedures. The error can

be separated into noise and systematic components.

A simple test was performed to assess the noise levels in

the data acquisition and image correlation procedures. A

neat PC tensile specimen was tested with an image

resolution of 37.5 pixels/mm and an image acquisition

rate of 1 Hz. Before starting the test, a reference image was

taken and then 100 additional images were acquired. The

specimen was then deformed at a constant nominal strain

rate of 0.005 s21 to a crosshead displacement (estimated

from prior tests) corresponding to a true axial strain, Eyy; of

approximately 0.10, and the test was stopped. The image

acquisition process was halted for 120 s, and then 100

images were acquired while the specimen was still

stationary. The sequence was repeated at strain increments

of 0.10 until a maximum strain of approximately 0.50 had

been reached. In order to assess the accuracy of the local

strain calculation, the images were then analyzed with a

subset size of 75 pixels at the lateral center of the specimen

at the axial location where necking initiated. As described in

Section 2.3.1, Eyy was calculated from the raw displacement

gradient data via Eq. (6). The very first image acquired was

the reference image for all calculations. For the 100

undeformed images, the mean ‘apparent’ strain was 4 me

with a range of 229 me and a standard deviation of 40 me.

The baseline accuracy of the local strain measurement is

thus on the order of ^100 me. At each subsequent strain, a

similar analysis was conducted on the 100 ‘fixed’ images.

Due to elastic unloading near the grip regions of the

specimen, the strain increased slightly at the point of interest

over the course of each set of 100 images. A second-order

polynomial was therefore fit to the data at each strain

increment, and the range and standard deviation were

defined in reference to the polynomial approximation. The

range and standard deviation varied from 166 me to 276 me

and 34 me to 47 me, respectively, and were not a function of

strain. Furthermore, in order to assess the accuracy of the

full-field strain calculation as well, the procedure was

repeated at a step size of two over a 21 pixel £ 21 pixel

subset centered on the point described above. Following the

algorithm of Section 2.3.2, the displacement gradient at the

center of the subset, and in turn the strain, was calculated by

fitting quadratic polynomials to the u and v displacements of

the resulting 11 £ 11 grid. As shown in Fig. 4, the average

axial strains (the maximum difference is 340 me) and level

of noise measured with the full-field technique are virtually

identical to those measured with the local technique.

While the error due to noise is not a function of the strain,

it is a strong function of the subset size. Fig. 5 plots the

average axial strain and noise level measured with the local

technique as a function of correlation subset size at strain

increment 3. The image-to-image variability decreases

dramatically and the strain approaches a constant value as

the subset size increases. At subset sizes greater than 100

pixels, however, the strain begins to decrease indicating that

the subset size is too large to capture the strain gradient in

the specimen. The subset size of 75 pixels used in all

subsequent analyses was thus chosen as a satisfactory

compromise between random error and detail lost due to

over-smoothing of the data.

The most significant source of systematic error is the

‘out-of-plane’ error, e; due to the Poisson contraction of the

specimen. As the specimen contracts in the x and z

directions, the representation of the specimen at the camera

Fig. 4. True axial strain, Eyy; measured with the local and full-field

techniques as a function of strain. For clarity, the full-field Eyy is shifted by

0.10, and the standard deviations are scaled by 103.

Fig. 5. True axial strain, Eyy; as a function of correlation subset size.
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sensor becomes smaller. In a coordinate system located at

the image center, any point p appears to be at p0: In the

y-direction, for example,

p0
y <

F0

F0 þ dF
£ py; ð8Þ

where F0 is the initial distance between the center of the

camera lens and the specimen surface (1.0 m) and dF is the

out-of-plane displacement. Considering purely axial defor-

mation and approximating the displacement field as linear

over the subset, the actual true axial strain can be written as

Eyy ¼ ln
p

top
y 2 pbot

y

S 2 1

 !
; ð9Þ

where S is the correlation subset size in the case of the local

strain calculation and the grid subset size in the case of the

full-field strain calculation, and p
top
y and pbot

y are the

locations of the top and bottom, respectively, of the subset.

Similarly, the apparent true axial strain is

E0
yy ¼ ln

p
top0

y 2 pbot0

y

S 2 1

 !
: ð10Þ

Calculating dF as a function of axial strain by assuming a

Poisson’s ratio of 0.5, the maximum out-of-plane error is

estimated to be 3.5 £ 1023 of the actual value. The

maximum error, e; for each strain component from the

front and side views are summarized in Table 1.

There are also sources of systematic error due solely to

the correlation algorithm itself. In Eq. (3), analytical

expressions are developed to represent the discrete matrix

of gray level values in each deformed subset. In order to

achieve sub-pixel displacement accuracy, I2 is constructed

by evaluating the analytic intensity patterns or ‘interpolation

functions’ at non-integer locations. Schreier et al. [10] have

shown that the form of interpolator used in this study,

quintic B-spline interpolation, together with a speckle

pattern exhibiting a uniform distribution of gray-values,

reduces the systematic error (termed interpolation bias) to a

level far below that of the measured noise. Systematic error

may also arise if the shape functions uðx; yÞ and vðx; yÞ which

approximate the displacement field are under-matched.

Schreier et al. [11] also have shown this error to be

insignificant when the shape functions are able to represent

accurately the displacement field over the subset and an

appropriate speckle pattern is used. For this reason,

quadratic shape functions (as opposed to linear) and a

relatively small subset size were used in this study.

The total error for a given normal strain component is

thus approximated as the random error plus the systematic

error due to out-of-plane motion. It takes the form

errorðmeÞ < ^100 þ eE £ 106
; ð11Þ

where E is the appropriate actual strain. The measured

strains are clearly very accurate, and the error is significant

only at strains similar in magnitude to that of the noise.

2.4. True stress calculation

Since no local load or stress information was known, a

macroscopic true stress, �Tyy; was calculated as

�Tyy ;
P

A
¼

P

A0lxxlzz

; ð12Þ

where P is the load cell measurement, A is the current cross-

sectional area of the specimen, A0 is the initial cross-

sectional area of the specimen, and lxx and lzz are the

macroscopic lateral stretches. lxx and lzz were calculated

from the change in the specimen’s overall width in the

x-direction, w; and thickness in the z-direction, t; respect-

ively. As illustrated in Fig. 6,

lxx ¼
w

w0

¼
XL 2 XR

xL 2 xR

; ð13Þ

with

XL < xL þ uðxc; ycÞL þ
›u

›x

����
ðxc;ycÞL

ðxL 2 xcLÞ; ð14Þ

and

XR < xR þ uðxc; ycÞR þ
›u

›x

����
ðxc;ycÞR

ðxR 2 xcRÞ: ð15Þ

Similarly,

lzz ¼
t

t0
¼

ZL 2 ZR

zl 2 zr

; ð16Þ

and so forth.

As will be shown later, the specimens did not deform

isotropically in the lateral directions, but the degree of

Table 1

Maximum out-of-plane strain errors, e, expressed as a fraction of the

corresponding actual strain value

Eyy (front) Exx (front) Eyy (side) Exx (side)

e 20.7 £ 1023 1.4 £ 1023 21.7 £ 1023 3.5 £ 1023 Fig. 6. Definition of variables used in the true stress calculation. Reference

coordinates denoted by ðx; yÞ; and deformed coordinates denoted by ðX;YÞ:
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anisotropy did not significantly affect the true stress

calculation. Therefore, with lxx < lzz; the true stress was

taken to be

�Tyy <
P

A0l
2
xx

ð17Þ

2.5. Simulations

Due to the inhomogeneous nature of the deformation of

polymers during necking, reduction of the accumulated

(full-field) specimen data into a measure of the true stress–

strain behavior of the material was not straightforward. In

order to assess the validity of the procedure and the

accuracy of the resulting material true stress–strain

behavior, we performed the same data reduction process

on a simulation of the inhomogeneous tensile deformation.

The simulation allowed us to reduce the simulated specimen

data to a material stress–strain behavior and compare the

result with the a priori known (input) material stress–strain

behavior.

The tensile tests on neat polycarbonate (PC) were

simulated with a three-dimensional finite element model.

The entire specimen was modeled with 2400 quadratic brick

elements. The glassy polymer constitutive model of Boyce

et al. [12] as modified by Arruda and Boyce [13] was used to

represent the material behavior of PC. In one dimension, the

constitutive model can be thought of as a linear elastic

spring in series with a parallel arrangement of a viscoplastic

dashpot and a non-linear hardening spring. The linear

elastic spring provides the initial elastic stiffness of the

material. When the material reaches its yield strength, the

dashpot is activated enabling viscoplastic flow and strain

softening to occur. In this implementation, the evolution

equation for the shear strength was modified in order to

achieve more gradual post-yield softening. The non-linear

hardening spring captures the post-yield strain hardening

due to the stretching and orientation of the underlying

macromolecular network during viscoplastic flow. The

material model parameters were fit to the results of

compression tests performed at several different strain

rates by Johnson [8]. The tensile yield stress measured in

this study was used to calibrate the pressure sensitivity of

the model. The analyses were performed with ABAQUS

Standard, version 6.3. A geometrically perfect mesh will

always deform homogeneously. Therefore, in order to

induce the experimentally observed localization, a small

edge perturbation, 0:0075w deep in the x-direction (as

defined in Fig. 2), was created by perturbing a single row of

nodes on the positive x-face. The defect was small enough to

have no significant effect on the results after necking

initiated. Furthermore, the nodes on the x-direction faces

were perturbed in accordance with the RMS surface

roughness of the specimen, which was measured to be

3 mm with a Zygo interferometer. Further details of the

finite element model are provided in Appendix A.

3. Results

3.1. Neat PC: full-field strain contours

Figs. 7(a)–(e) and 8(a)–(e) show experimental contours

of true strain, E ¼ ln V; for a neat PC tensile bar at

crosshead displacements, U; of 2.5, 3.0, 3.5, 4.5, and

7.5 mm. The plots depict the front view of an initially

10 mm long section of the gage length centered at the site of

neck initiation (defined as the axial location where the axial

strain increased most rapidly). The corresponding load vs.

crosshead displacement behavior is shown in Fig. 9.

The plots of axial strain, Eyy; in Fig. 7(a) and shear strain,

Exy; in Fig. 8(a) shows that the specimen at first deforms

uniformly. At U ¼ 2:5 mm; corresponding to the peak of

the load–displacement curve, the axial strain is approxi-

mately constant at Eyy ¼ 0:07; and the shear strain is non-

existent, indicating that the material is still largely in the

elastic regime. Soon thereafter, at U ¼ 3:0 mm; the load

drops as necking begins, and the strain field becomes highly

non-uniform. The site of neck initiation is the axial location

where, due to some geometric or morphological feature of

the specimen, yield occurs first. Localization of plastic flow

continues because the decrease in load carried at the first

section to yield reduces the load on the rest of the specimen.

Apparent in Fig. 7(b)–(d) are the sharp gradients in strain

which complicate the measurement of tensile stress–strain

behavior in polymers. In Fig. 7(c), the strain ranges from

Eyy ¼ 0:1 to Eyy ¼ 0:5 over a distance on the order of the

specimen width. The inhomogeneous axial strain is

accompanied by a sharp increase in the shear strain in Fig.

7(b) and (c). The magnitudes of Exy and the shape of the

outline of the specimen are indicative of the sharp, nearly

458, shear band which rips through the material during neck

formation. The deformation remains concentrated in this

region until the material in the neck stabilizes, allowing an

adjacent section to yield and localize. In Fig. 7(d), the neck

has stabilized at a strain of Eyy < 0:54 and begun to

propagate along the specimen—behavior commonly

referred to as ‘cold drawing’. The strain at which the neck

stabilizes is termed the ‘drawing strain’ (calculated as the

natural logarithm of the material’s draw ratio). The shear

band is no longer apparent in Fig. 8(d), but areas of

substantial shearing exist near the specimen corners where

material is being drawn into the neck. At U ¼ 7:5 mm;

shown in Figs. 7(e) and 8(e), the neck has propagated nearly

the entire length of the portion of the specimen under study.

During the whole period of neck propagation, the load–

displacement curve is essentially flat. It is not until the neck

reaches the grip areas of the specimen at U < 13:0 mm; and

the material begins to strain harden homogeneously, that the

load increases again.
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Figs. 7(a0)–(e0) and 8(a0)–(e0) show the simulation results

at crosshead displacements corresponding to those in Figs.

7(a)–(e) and 8(a)–(e). Particularly at large displacements,

there is good agreement between the measured and

predicted behavior in terms of both strain levels and

modes of deformation. The same pattern of localization

followed by neck propagation is clearly present. Further-

more, comparing Fig. 7(d) and (d0), one sees that the neck

stabilizes in both the experiment and the simulation at

nearly the same axial strain. The major difference between

the experiment and the simulation is the apparent delayed

localization of the experiment. At U ¼ 2:5 mm; in Figs.

7(a0) and 8(a0), for example, the simulation has already

passed through the peak in the load–displacement curve

whereas the experiment has just reached the peak. The

experiment yields at a larger crosshead displacement than

the simulation (as shown in Fig. 9) in part due to machine

compliance, grip alignment, and possible specimen slip-

page. As will be mentioned later, evidence of these effects

also shows itself in a smaller than expected initial true axial

strain rate. The discrepancy is also due to the fact that the

material model does not capture the pre-peak non-linearity

observed in experimental stress–strain curves. Thus, at any

given crosshead displacement after the peak load, the

simulation is further along in the deformation process than

the experiment.

3.2. Neat PC: strain versus time and position

Once necking begins, the behavior of PC becomes a

strong function of time and position. Every axial location on

the specimen has a unique strain vs. time relationship. In

order to characterize most accurately the behavior of PC, the

local strain behavior was systematically probed using the

algorithm described in Section 2.3. Fig. 10 depicts

the matrix of points that were commonly analyzed. Location

row 1 is where the neck initiates. Location rows 2, 3, 4, and

5 are 1.0, 2.5, 5.0 and 10.0 mm, respectively, from location

row 1. Location column A is at the axial center line of the

specimen. Location columns B and C are located one half of

the correlation subset size, or 37 pixels, from the edge of the

specimen. 37 pixels corresponds to 1.0 mm at low

magnification and 0.5 mm at high magnification. Points

Fig. 7. Experimental (top) and simulated (bottom) uniaxial tension of neat PC (front view). Contours of true axial strain, Eyy; for increasing crosshead

displacement, U : (a), (a0) U ¼ 2:5 mm; (b), (b0) U ¼ 3:0 mm; (c), (c0) U ¼ 3:5 mm; (d), (d0) U ¼ 4:5 mm; (e), (e0) U ¼ 7:5 mm:
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with subscripts F and S were observed from the front and

side views, respectively.

Fig. 11 shows the true axial strain, Eyy; vs. time behavior

for four points along the front axial center line. In addition,

contours of Eyy are shown for t ¼ 50 s; t ¼ 100 s; and

Fig. 8. Experimental (top) and simulated (bottom) uniaxial tension of neat PC (front view). Contours of true shear strain, Exy; for increasing crosshead

displacement, U : (a), (a0) U ¼ 2:5 mm; (b), (b0) U ¼ 3:0 mm; (c), (c0) U ¼ 3:5 mm; (d), (d0) U ¼ 4:5 mm; (e), (e0) U ¼ 7:5 mm:

Fig. 9. Uniaxial tension of neat PC. Experimental and simulated load, P; vs.

crosshead displacement, U:

Fig. 10. Definition of strain measurement locations: (a) undeformed

specimen, (b) deforming specimen.
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t ¼ 150 s: As observed in the full-field strain contours in

Section 3.1, the specimen deforms homogeneously at axial

strains less than 0.07. Until this point, the axial strain vs.

time behavior is identical at all four locations. Once necking

begins, however, the curves diverge. At point 1AF, the strain

rises quickly to the drawing strain of Eyy < 0:54 before

essentially leveling off for approximately 200 s. The strain

at point 3AF, just 1.0 mm from the site of neck formation,

rises slightly less rapidly but steadily also to Eyy < 0:54:

The strain at points 4AF, and 5AF, however, plateaus for a

period of time before increasing at a rate equal to that of

point 3AF. During the periods of essentially zero strain rate

at points 4AF, and 5AF, the deformation occurs entirely

within the neck. The points a distance away from where the

neck forms do not experience plastic deformation until the

neck has propagated along the specimen. After leveling off

at Eyy < 0:54; all four curves increase in slope again at

t < 250 s: At this time, the neck has propagated to the grip

areas of the specimen, and the entire gage length begins to

deform homogeneously once again.

Fig. 12 shows the true axial strain vs. time behavior for

the three lateral locations, AF, BF, and CF, at axial cross-

sections 1, 4, and 5. At location row 1, the axial strain is a

function of the lateral position, x: The strain increases more

rapidly at the center of the specimen than at the edges. The

discrepancy in the strains is due to the fact that location 1

bisects the approximately 458 shear band depicted in

Figs. 7(a)–(c) and 8(a)–(c). For the purpose of the true

stress–strain calculation, a macroscopic true axial strain,
�Eyy; was defined at each axial cross-section. The specimen

was figuratively sliced in the y-direction into five equally-

sized strips. At each axial location, the local axial strains,

Eyy; at the centers of the five strips were calculated and

averaged. Also plotted in Fig. 12 at location rows 1, 4, and 5,
�Eyy; as expected, lies comfortably between the local Eyy

measurements. Moving down the specimen away from the

point of neck initiation, we see that, at locations rows 4 and

5, the axial strain is approximately constant across the width

of the specimen. As illustrated in Fig. 7(d), after neck

formation, the shear band quickly disappears, and the axial

deformation at a particular cross-section becomes nearly

uniform.

The true lateral strain, Exx; vs. time behavior at location

rows 1, 4, and 5 is plotted in Fig. 13.

Unlike the axial strain, the lateral strain is a strong function

of x at all axial locations. At each location row, the lateral

strain is significantly smaller in magnitude at the center of

the specimen (location A) than at the edges of the specimen

(locations B and C). The strains at locations B and C are

nearly identical.

Since the lateral strain is not constant across the width of

the specimen, the macroscopic lateral stretch defined in

Section 2.4 is used to calculate the current cross-sectional

area of the specimen. Fig. 14 shows the local true lateral

strain at location row 4 and the macroscopic true lateral

strain, �Exx ¼ ln lxx; with lxx defined by Eq. (13), plotted as a

Fig. 12. Uniaxial tension of neat PC (front view). Local true axial strain,

Eyy; and macroscopic true axial strain, �Eyy; vs. time at location rows 1, 4,

and 5.

Fig. 11. Uniaxial tension of neat PC (front view). True axial strain, Eyy; vs.

time and Eyy contours at times t ¼ 50 s; t ¼ 100 s; and t ¼ 150 s:

Fig. 13. Uniaxial tension of neat PC (front view). Local true lateral strain,

Exx; vs. time at location rows 1, 4, and 5.
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function of time. The macroscopic curve fits nicely between

the responses of the sides and the center.

Fig. 15 is a plot identical to Fig. 14 but with the

measurements taken from the side view of the specimen.

The macroscopic strain again falls between the three local

strain measurements.

Combining the results from this section, we plot the

macroscopic true lateral strain vs. macroscopic true axial

strain at locations 3F and 3S in Fig. 16.

The initial slopes of these curves define the elastic Poisson’s

ratios, nyx and nyz: Both equal to 0.39, the values of nyx and

nyz indicate that the specimen deforms in a transversely

isotropic manner. Henceforth, the Poisson’s ratio will thus

be referred to as simply n: At larger strains, however, the

specimen does not deform isotropically in the two lateral

directions. The specimen contracts more in the z-direction,

particularly at axial strains greater than 0.25. While the

degree of anisotropy is small enough to have virtually no

effect on the true stress calculation (hence Eq. (17)), as will

be shown in Section 3.4, the anisotropy must be taken into

consideration when calculating the volumetric strain.

3.3. Neat PC: true axial stress–strain behavior

One of the primary goals of this study was to determine

the constant strain rate constitutive behavior of PC in

uniaxial tension from a standard tension test. It is well

known that the response of polymers is a strong function of

time due to the strain rate dependency of yield and the

phenomenon of stress relaxation. Figs. 11 and 12 show that

the axial strain vs. time behavior is different for every axial

location on the specimen. It follows that the stress–strain

behavior must also be a function of axial location.

Furthermore, even at a particular axial location, the true

axial strain rate is a function of axial strain. In order to

determine how best to infer a single representative stress–

strain curve from a test where every material point behaves

differently, the simulation was consulted. It is shown how

the constitutive behavior of PC in uniaxial tension—viewed

as a known in the simulation—can be ‘backed out’ from the

same macroscopic quantities that the experimental tech-

nique measures.

Fig. 17 shows the simulation’s macroscopic true axial

strain rate, _�E
ip
yy; at axial locations 1, 3, and 5 as a function of

time.
_�E

ip
yy is given by

_�E ip
yy ;

�E
ip
yyltiþ1

2 �E
ip
yylti

tiþ1 2 ti

; ð18Þ

where �E
ip
yy is the axial strain averaged over all integration

points “ip’s” at a given axial cross-section in the reference

configuration. Over the three axial locations, _�Eyy is constant

during only the first few seconds of the test. Here, the

material is still in the initial, elastic regime. Thereafter, the

strain rate jumps an order of magnitude at location 1 as

the neck forms. While the neck is at location 1, _�Eyy at

location 3 decreases, but remains positive, as material is

slowly drawn into neck, but, at location 5, _�Eyy decreases to

Fig. 16. Uniaxial tension of neat PC. Macroscopic true lateral strains, �Exx

and �Ezz; vs. macroscopic true axial strain, �Eyy:

Fig. 15. Uniaxial tension of neat PC (side view). True lateral strain, Ezz; and

macroscopic true lateral strain, �Ezz; vs. time at location row 3.

Fig. 14. Uniaxial tension of neat PC (front view). Local true lateral strain,

Exx; and macroscopic true lateral strain, �Exx; vs. time at location row 4.
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slightly less than zero due to elastic unloading in the wake of

the macroscopic load drop. This period of approximately

constant axial strain was observed in the experimental

results presented in Figs. 11 and 12. Once the drawing strain

is reached at location 1, the neck propagates and the strain

rate falls to essentially zero. Locations 3 and 5 undergo

similar strain rate jumps when the neck reaches their

vicinity. Eventually, at t < 170 s; the neck reaches the grip

areas of the specimen, and the entire gage length begins to

deform homogeneously again at a rate of approximately

0.0015 s21. Every material point thus experiences an over

two orders of magnitude variation in strain rate over the

course of a constant crosshead velocity test.

Fig. 18 illustrates the relationship in the simulation

between stress–strain behavior and strain rate.

The macroscopic true axial stress, �T
ip
yy; analogous to �E

ip
yy; is

the true axial stress averaged over all integration points at a

particular axial cross-section. In order to evaluate how well

the measured behavior represents the material’s actual

uniaxial stress–strain behavior, the true stress–strain

behavior predicted by the constitutive model for homo-

geneous uniaxial tension at strain rates of 0.0005 s21 and

0.05 s21 is also plotted in Fig. 18.

Locations 1, 3, and 5 exhibit, particularly at

intermediate strains, significantly different stress–strain

behavior due to their disparate strain rate histories. The

strain rate is not a function of position until after

yielding, however, and hence all three locations yield at

65 MPa. At yield, the strain rate is close to 0.005 s21,

and, in fact, the measured yield stress sits squarely

between the yield stresses predicted by the constitutive

model for strain rates of 0.0005 s21 and 0.05 s21. After

yield, the rate of softening increases with the distance

from the site of neck initiation. At location 1, the strain

rate jumps by an order of magnitude and the stress–

strain curve correspondingly shifts up nearly to the

prediction for _Eyy ¼ 0:05 s21: At strains larger than
�Eyy ¼ 0:33; the strain rate at location 1 steadily decreases

to approximately 0.0005 s21, and the stress–strain curve

follows suit by gradually transitioning to the behavior

predicted for a strain rate of 0.0005 s21. Here, the

decrease in strain rate is in competition with the

material’s tendency to harden. Once the neck stabilizes

at �E
ip
yy < 0:54; the strain rate goes to zero as the neck

propagates along the specimen. The strain rate at location

3 deviates from that at location 1 soon after yield. The

decrease to a minimum of nearly zero exaggerates the

softening response and causes a rather sudden drop in the

stress level below that predicted for _Eyy < 0:0005 s21: Once

the neck begins to propagate, the strain rate at location 3

increases and the behavior follows the pattern of location 1.

The behavior at location 5 follows the same trend as

locations 1 and 3, but, in this case, as illustrated in Fig. 17,

the strain rate falls to zero or less for over 60 s and elastic

unloading occurs. The elastic unloading is readily apparent

in Fig. 18 as the slope of the stress–strain curve during the

stress drop is parallel to the slope during the elastic regime.

Finally, all three stress–strain curves exhibit a ‘kink’ at
�E

ip
yy < 0:54 coincident with the neck reaching the grip areas

and the reestablishment of homogeneous deformation. This

phenomenon is due to the fact that, after the neck propagates

through, all sections but the last to localize experience a

period of stress relaxation followed by a strain rate jump

from zero to approximately 0.0015 s21.

For the most part, all three curves are bracketed by

the constitutive behavior at _Eyy ¼ 0:0005 s21 and _Eyy ¼

0:05 s21: Overall, when strain rate effects are included,

the average stress and strain in a tensile bar is shown to

represent adequately the material stress–strain behavior.

The experimental technique, however, is not privy to the

stress and strain at interior points. It can only measure

the average stress in the material and the surface strains.

In order to demonstrate the accuracy of the present

Fig. 17. Tensile bar simulation results for uniaxial tension of neat PC.

Macroscopic true axial strain rate, _�E
ip
yy; vs. time at axial locations 1, 3, and 5.

Fig. 18. Tensile bar simulation results for uniaxial tension of neat PC.

Macroscopic true axial stress, �T
ip
yy; (left hand axis) and macroscopic true

axial strain rate, _�E
ip
yy; (right hand axis) vs. macroscopic true axial strain, �E

ip
yy;

at axial locations 1, 3, and 5. Constitutive model true axial stress, Tyy; vs.

true axial strain, Eyy; at true strain rates _Eyy ¼ 0:0005 s21 and _Eyy ¼ 0:05

s21:
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technique, in Fig. 19, the average stress–strain behavior,

calculated as above using all integration points at a

cross-section ð �T
ip
yy – �E

ip
yyÞ is compared to the average

stress–strain behavior ð �Tyy – �EyyÞ evaluated using the

variables actually measured during the experiments.

Specifically, �Tyy is calculated from Eq. (17), with P

given by the sum of the nodal reaction forces at the grip.
�Exx is calculated as ln lxx, with lxx taken from Eq. (13),

with x2L and x2R given by the nodal displacements on the

edges of the bar. �Eyy is calculated from the axial strains

at five equi-spaced integration points near the surface of

the bar. The excellent agreement between the two sets of

stress–strain curves shown in Fig. 19 proves that the

assumptions of the experimental technique are valid.

The experimentally measured stress–strain and strain

rate data depicted in Fig. 20 exhibits the same trends

observed in the simulation, but there are minor discrepan-

cies. As alluded to in Section 3.1, the initial axial strain rate,

when the deformation is still homogeneous, is smaller than

expected due to factors related to the load frame and grips.

The stress–strain behavior at location 1F softens less and at

a rate slower than that of the simulation. This is likely due to

the peak in strain rate at location 1F being substantially

broader in the experiment than in the simulation (Fig. 18).

As observed in Figs. 7 and 8 and discussed in Section 3.1,

the shear band in the simulation is sharper than the shear

band that forms during the experiment. The greater degree

of localization of course implies a higher strain rate. The

experimental and simulation results also differ at large axial

strains. The experimental stress–strain curves exhibit a

sharper kink at �Eyy < 0:54 and a lower rate of hardening.

This is, at least in part, an artifact of the choice of material

model parameters used in the simulation. Due to an

increasingly gradual transition from localized deformation

to homogeneous deformation, the magnitude of the kink in

the experimental stress–strain curve decreases as the

measurement location is moved away from the point of

neck initiation. Fig. 11 shows that, immediately after neck

stabilization, the strain at point 5AF increases almost

monotonically while the strain at locations closer to the

site of neck formation remains almost constant. Correspond-

ingly, in Fig. 20, at large axial strains, the strain rate at point

5F remains positive. After the drawing strain is reached, the

strain rate at locations 1F and 3F, however, is nearly zero

until the neck reaches the grip area.

The fact that the strain rate vs. axial strain relationship is

different at every axial location on the specimen is used to

approximate the constant strain rate true stress–strain

behavior of the material. Every point on the specimen

gage length eventually experiences the entire range of axial

strains. A composite stress–strain curve based on strain rate

can therefore be constructed from the results at any number

of axial locations. This was accomplished, in a manner

similar to that described in Section 2.3.2, by performing the

correlation, macroscopic true stress–strain calculation, and

macroscopic strain rate calculation at every fourth axial

pixel location (for a total of approximately 100). The results

were then interpolated to coincide with 40 macroscopic

axial strains spaced equally between �Eyy ¼ 0 and �Eyy ¼

0:75: The behavior chosen to represent each axial strain was

drawn from the axial location which exhibited a strain rate

closest to a designated target rate. Fig. 21 illustrates the

locations and strain rates chosen for a target rate of _�Eyy ¼

0:02 s21: For clarity, the strain rate vs. axial strain behavior

at only four locations is shown, but it is apparent how the

composite strain rate curve transitions from the behavior at

location 1F at small axial strains to the behavior at location

5F at large axial strains. The target rate was chosen to

maximize the width of the constant strain rate plateau while

avoiding any strain rate drops during the early stages of

deformation. While the strain rate is thus kept constant

during much of the period of neck propagation, it is

Fig. 19. Tensile bar simulation results for uniaxial tension of neat PC.

Macroscopic true axial stress, �Tyy; vs. macroscopic true axial strain, �Eyy; and

macroscopic true axial stress, �T
ip
yy; vs. macroscopic true axial strain, �E

ip
yy;

at axial locations 1, 3, and 5.

Fig. 20. Experimental results for uniaxial tension of neat PC. Macroscopic

true axial stress, �Tyy; (left hand axis) and macroscopic true axial strain rate,
_�Eyy; (right hand axis) vs. macroscopic true axial strain, �Eyy at axial locations

1F, 3F, and 5F. Constitutive model true axial stress, Tyy; vs. true axial strain,

Eyy; at true strain rates _Eyy ¼ 0:0005 s21 and _Eyy ¼ 0:05 s21:
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impossible to maintain a constant strain rate for all axial

strains due to the large disparity in strain rates experienced

over the course of a test.

The macroscopic stress–strain curves corresponding to

the strain rate curves in Fig. 21, together with the

constitutive behavior at _Eyy ¼ 0:02 s21; are shown in

Fig. 22.

The composite macroscopic stress–strain curve transitions

nicely from the results at location 1F to those at location 5F.

While the target strain rate is maintained, there is excellent

agreement between the composite behavior and the

constitutive model prediction. Because, at large axial

strains, it takes on the behavior of the point on the gage

section furthest from the site of neck formation, the

composite curve also successfully avoids the kinking

phenomenon.

3.4. Neat PC: volumetric behavior

The final goal of this study was to measure the volume

change during a tensile test. In general, volumetric strain is

an important measure for quantifying modes of deformation

and/or identifying events such as debonding or cavitation.

An amorphous, non-crazing polymer, polycarbonate is

known to conserve volume during plastic deformation.

The material’s incompressibility and the constraints of the

specimen geometry cause the tensile bar to laterally deform

in an inhomogeneous manner. The inhomogeneity is readily

apparent upon examination of the surface of a deformed

specimen. From the front view, the surface exhibits an out-

of-plane concave shape with the largest through-thickness

macroscopic strains ð �EzzÞ occurring at the center, along the

y-axis. This observation is in accord with Fig. 13 which

shows that Exx is at a minimum (in magnitude) at x ¼ 0:

Therefore, the current area is slightly overestimated in Eqs.

(12) and (17), which assume that �Ezz is constant across the

specimen width. While negligible when calculating the true

stress, the error in the current area calculation prohibits

determining the volumetric strain from macroscopic

measurements. Very small in PC and a function of the

change in area (not the area itself as in the case of the true

stress), the volumetric strain is significantly overestimated

by a macroscopic calculation.

Thus, for the volumetric strain, a local measurement and

Eq. (7) are used. The shape of the deformed specimens and

the lateral strain behavior presented in Figs. 13 and 16

indicate that, even locally, the material does not deform

isotropically in the two transverse directions. Since the

current technique can only measure in-plane strains, the

simulation was used to evaluate the degree of anisotropy

and determine how best to measure the volumetric strain.

Fig. 23 shows that, at point 1BF, for example, the strains in

the z-direction are substantially larger in magnitude than

those in the x-direction. Assuming that the quantity

Fig. 22. Uniaxial tension of neat PC. Macroscopic true axial stress, �Tyy; vs.

true axial strain, �Eyy at axial locations 1F, 2F, 3F, and 5F and composite

curve. Constitutive model true axial stress, Tyy; vs. true axial strain, Eyy; at

true strain rate _Eyy ¼ 0:02 s21:

Fig. 21. Uniaxial tension of neat PC. Macroscopic true axial strain rate, _�Eyy;

vs. true axial strain, �Eyy; at axial locations 1F, 2F, 3F, and 5F and composite

curve.

Fig. 23. Tensile bar simulation results for uniaxial tension of neat PC. True

lateral strains, Exx and Ezz; vs. true axial strain, Eyy; at axial location 1B.
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measurable from the front view, Exx; is identical to Ezz

would thus overestimate the volume change. Fig. 23,

however, also indicates that the through-thickness lateral

strain, Ezz; vs. axial strain behavior at point 1BS is nearly

identical to that at point 1BF. Since it is impossible to

measure both Exx and Ezz at the same location, points 1BF

and 1BS were assumed to represent approximately the same

material point. The behavior measured on the z-plane at 1BF

and the behavior measured on the x-plane at 1BS were

combined in order to evaluate the volume change via Eq. (7).

Using two tests to represent one test introduces

additional sources of error. The simulation showed that

the results at points 1BF and 1BS accurately represent the

behavior of a single material point. The experimental

results, however, must be taken from separate tests, and

unfortunately no two specimens deform identically. Fur-

thermore, it is impossible to know whether one is correlating

1BF with 1BS or 1BF with 1CS, and so forth. Therefore, from

each perspective, up to six tests were performed, and the

results at points 1B and 1C were interpolated and averaged

for each axial strain, Eyy; to form the mean displacement

gradients H̄F and H̄S. H̄F and H̄S were correlated at each

axial strain, and the deformation gradient was defined as

F ¼

�HF
xx þ 1 �HF

xy 0

�HF
yx ð �HF

yy þ �HS
yyÞ=2 þ 1 �HS

yz

0 �HS
zy

�HS
zz þ 1

0
BBB@

1
CCCA: ð19Þ

The volumetric strain calculated from Eq. (7) for uniaxial

tension of neat PC is shown in Fig. 24.

At small strains, the volumetric strain increases linearly due

to the elastic Poisson effect. At Eyy < 0:07; the volume

change levels off at approximately 0.01 as the mode of

deformation switches to incompressible plastic flow.

Immediately thereafter, the volumetric strain decreases

slightly. The decrease in volume is likely due to elastic

recovery as the stress level drops during the strain softening

stage of deformation. At Eyy < 0:20; the volumetric strain

increases again before finally leveling off at approximately

0.03 at Eyy ¼ 0:50: Further dilatation is attributed to the

additional elastic deformation which occurs during the

strain hardening stage of deformation and possible small-

scale cavitation events at defects (such as dust particles) in

the material.

The maximum error in the volumetric strain calculation

is approximated from Eqs. (7) and (11) by neglecting the

shear strains and assuming that the noise acts in the same

direction as the out-of-plane error (i.e. minimizing Eyy and

maximizing Exx and Ezz). The error ranges almost linearly

from 2300 me at Eyy ¼ 0 to 22100 me at Eyy ¼ 0:5: Even

at its absolute theoretical maximum, this error is only

roughly 10% of Ekk and is within acceptable bounds.

3.5. Rubber-filled PC

The full-field strain contour, macroscopic stress–strain,

and volumetric strain analyses described in the previous

sections were also conducted on blends with rubber volume

fractions of f ¼ 0:05; f ¼ 0:15; and f ¼ 0:25:

3.5.1. Full-field strain contours

Contours of true axial and shear strain for the three

rubber-filled blends are plotted in Figs. 25–30. The axial

strain contours for blends with f ¼ 0:05 and f ¼ 0:15;

shown in Figs. 25 and 27, respectively, are remarkably

similar to those of the neat polymer. The shear strain

contours for f ¼ 0:05 in Fig. 26 and, particularly, for f ¼

0:15 in Fig. 28, however, show substantially less shear

deformation than the contours for the neat material in Fig. 8.

The rubber particles stabilize the deformation and, as their

volume fraction increases, inhibit the sudden shear band

formation which occurs in the homopolymer. The axial

strains in the homopolymer are actually slightly lower than

those in the blends with f ¼ 0:05 and f ¼ 0:15 due to the

amount of axial displacement accommodated by the shear

band.

The behavior of the blend with f ¼ 0:25 is completely

different than that of the homopolymer and the blends with a

lower volume fraction of filler. The contours of axial strain

in Fig. 29 depict a pattern of deformation substantially more

uniform than that observed in any of the other materials. The

plots of shear strain in Fig. 30 show negligible shearing

except where material is being drawn into the neck. The

neck itself is not nearly as sharp, nor are the peak axial strain

levels as high, as in the other blends or the homopolymer.

As will be further discussed below in Section 3.5.2, yield

stress and post-yield strain softening decrease with increas-

ing f : These factors combine to reduce the localization

phenomenon, resulting in a substantially more homo-

geneous deformation at large f :

Fig. 24. Uniaxial tension of Neat PC. Volumetric strain, Ekk ; vs. true axial

strain, Eyy:
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Fig. 27. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:15 (front view). Contours of true axial strain, Eyy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:

Fig. 26. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:05 (front view). Contours of true shear strain, Exy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:

Fig. 25. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:05 (front view). Contours of true axial strain, Eyy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:
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Fig. 29. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:25 (front view). Contours of true axial strain, Eyy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:

Fig. 30. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:25 (front view). Contours of true shear strain, Exy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:

Fig. 28. Experimental uniaxial tension of rubber-filled PC, f ¼ 0:15 (front view). Contours of true shear strain, Exy; for increasing crosshead displacement, U :

(a) U ¼ 2:5 mm; (b) U ¼ 3:0 mm; (c) U ¼ 3:5 mm; (d) U ¼ 4:5 mm; (e) U ¼ 7:5 mm:
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3.5.2. True axial stress–strain behavior

Fig. 31 displays the composite macroscopic true stress–

strain curves for the homopolymer and the three blends

while Fig. 32 illustrates the true axial strain rates associated

with each composite curve.

As the rubber volume fraction increases, the degree of

localization and maximum strain rate decrease, allowing a

smaller target strain rate to be chosen. In fact, with a target

strain rate of _�Eyy ¼ 0:007 s21; the composite curves for f ¼

0:15 and f ¼ 0:25 achieve an almost constant true strain

rate. The stress–strain curves in Fig. 31 exhibit the expected

decrease in modulus and yield stress with increasing rubber

volume fraction. The elastic properties of the blends agree

closely with the predictions of the composite model of Mori

and Tanaka [14]. Details of the model and the specific form

used can be found in Appendix B. The predicted ratios of

blend modulus to neat modulus, Eblend/E, for volume

fractions of f ¼ 0:05; f ¼ 0:15; and f ¼ 0:25; are 0.92,

0.77, and 0.64, respectively, while the measured ratios are

0.94, 0.77, and 0.63, respectively. Also calculated for each

material from the elastic part of the true macroscopic axial

vs. lateral strain curve is the Poisson’s ratio, n: Possessing a

Poisson’s ratio approaching 0.5, the rubber particles

increase the Poisson’s ratios of the blends. The predicted

Poisson’s ratios, for volume fractions of f ¼ 0:05; f ¼ 0:15;

and f ¼ 0:25; are 0.398, 0.409, and 0.420, respectively,

while the measured values are 0.397, 0.414, and 0.423.

Averaged over a minimum of four tests for each volume

fraction, the yield stresses and elastic properties are

summarized in Table 2. Furthermore, consistent with the

compression data of Johnson [8] and the micromechanical

modeling of Danielsson et al. [15], the stress–strain data

exhibits a decrease in post-yield strain softening and, at

large strains, strain hardening slope with increasing rubber

volume fraction. The reduction in rate and magnitude of

post-yield softening with increasing f correlates well with

the increasingly homogeneous deformation observed with

increasing f in the full-field strain contours. As discussed

in Section 3.1, the axial location where necking initiates is

the first to yield. The instability is due to the inability of

the material’s plastic resistance to balance the shrinking

cross-sectional area of the specimen. Strain softening

exacerbates the localization phenomenon by causing

adjacent areas to elastically unload. As the rate and

magnitude of strain softening decreases, the neck becomes

more diffuse and stabilizes at a lower axial strain.

3.5.3. Volumetric behavior

The volumetric strain behavior of neat PC and the three

blends is depicted in Fig. 33.

In general, the rubber-modified blends behave very

similarly. All three materials exhibit less dilatation—both

in the elastic and plastic regimes—than neat PC. The lack of

volume change is a clear indication that the rubber particles

do not cavitate. As f increases, consistent with the decrease

in Poisson’s ratio, the initial slopes of the curves, dEkk=dEyy;

decrease and the curves roll over at lower axial strains. Well

predicted by the Mori-Tanaka model in Section 3.5.2, the

slight decrease in slope with increasing f in the elastic

regime is simply due to the volume averaging of the elastic

behavior of the two constituent materials. The roll-over at

lower axial strains corresponds to the decrease in yield

strain with increasing f observed in the stress–strain

behavior in Fig. 31. After yielding, the blend with f ¼

0:05 shows, presumably due to elastic unloading, a drop in

Fig. 31. Uniaxial tension of neat and rubber-modified PC. Macroscopic true

axial stress, �Tyy; vs. true axial strain, �Eyy:

Fig. 32. Uniaxial tension of neat and rubber-modified PC. True axial strain

rate, _�Eyy; vs. true axial strain, �Eyy:

Table 2

Yield stress and elastic properties of neat and rubber-filled PC

f Yield stress

(MPa)

Young’s modulus, E

(MPa)

Eblend/E Poisson’s ratio, n

0 65.8 2280 1.0 0.392

0.05 59.0 2140 0.94 0.397

0.15 50.1 1760 0.77 0.414

0.25 40.2 1430 0.63 0.423
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volumetric strain similar to that of the homopolymer but

smaller and more elongated. In the blends with f ¼ 0:15 and

f ¼ 0:25; there is no discernable decrease in volumetric

strain. This trend agrees with the reduction in magnitude and

slope of post-yield strain softening with increasing f

observed in Fig. 31.

4. Discussion

Digital image correlation and the associated data

reduction schemes developed in this study proved to be

powerful tools for the measurement of the large-strain

behavior of an inhomogeneously deforming glassy polymer.

Showing excellent agreement with simulation results, they

successfully measured tensile true stress–strain behavior,

full-field strain contours, and volumetric strain.

Tensile true stress–strain behavior is the most funda-

mental mechanical property of a material, but it is largely

unavailable for polymers that neck and draw in the manner

of PC. The ability to obtain reliable data for these types of

materials will be of great assistance in the development of

constitutive models.

Experimental full-field strain contours provide invalu-

able information about deformation mechanisms. As

illustrated in Section 3.5.1, they quantify not only the

degree of localization but also the modes of deformation—

shearing and/or axial stretching. This information has

important implications, particularly for the toughening of

polymers. The primary way to toughen polymers is to

increase the volume of material involved in the deformation

process prior to fracture. Full-field strain contours of

notched bend tests, for example, would provide a quanti-

tative measure of the deformation fields in the vicinity of the

notch.

Volumetric strain is a quantity critical for the complete

understanding of polymer behavior. In homopolymers, it is

an indicator of cavitation and/or crazing and, in semi-

crystalline homopolymers, crystal fragmentation. In filled

polymers, it is also a sign of particle cavitation or

debonding. In this study, the small volume change exhibited

by the rubber-filled materials indicates that the rubber

particles do not cavitate under the low triaxiality conditions

of uniaxial tension.

The technique shows great promise, and what short-

comings it does possess could be readily overcome. Strictly

constant strain rate true stress–strain behavior could be

calculated by constructing composite macroscopic true

stress–strain curves from tests performed at applied strain

rates an order of magnitude apart. The uncertainty arising

from combining strain data from two separate tests at two

different orientations in order to calculate volumetric strain

could be eliminated by adding a second camera or other

optical device to capture the strains in the third dimension

simultaneously.
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Appendix A. Finite element model of uniaxial tension

test

Since shear banding occurs during the uniaxial tension

test, the entire specimen, including the grip sections, was

modeled with 2400 elements of ABAQUS type C3D20. The

mesh is shown in Fig. 34(a), and the boundary conditions

are illustrated in Fig. 34(b).

An Instron 5582 load frame with self-aligning manual grips

was used in the experiments. With this set-up, the bottom

grip is fixed while the top grip is free to rotate about a double

pin joint 32 cm above the top grip. In the simulation,

therefore, the boundary conditions on the 3-faces of the

bottom grip were such that all but the upper-most two rows

of nodes were fixed in all three directions. All three degrees

of freedom on all but the bottom-most two rows of nodes on

the 3-faces of the top grip were tied to a single node at the

center of the top grip. A rigid beam element of type

Fig. 33. Uniaxial tension of neat and rubber-modified PC. Volumetric

strain, Ekk ; vs. true axial strain, Eyy:
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CONN3D2 was defined between that node and a node

32 cm away in the 2-direction. The top, or driver node, was

fixed in the 1-direction and 3-direction. The driver node was

displaced at a constant rate of 0.095 mm/s in the 2-direction.

The macroscopic load, P; was obtained from the reaction

force in the 2-direction at the driver node.

Appendix B. Predicting effective blend moduli

The theory of Mori and Tanaka [14] has been widely

used to calculate the effective properties of composites. For

the case of spherical elastic inclusions in an elastic matrix,

the bulk and shear moduli, as expressed by Wang et al. [16],

are respectively given by

kblend ¼ km þ f
kmðkp 2 kmÞ

ð1 2 f Þaðkp 2 kmÞ þ km

ð20Þ

and

mblend ¼ mm þ f
mmðmp 2 mmÞ

ð1 2 f Þbðmp 2 mmÞ þ mm

; ð21Þ

where subscripts ‘m’ and ‘p’ denote properties of the matrix

and particle, respectively. The parameters a and b are given

by

a ¼
1

3

1 þ n

1 2 n

 �
ð22Þ

and

b ¼
2

15

4 2 5n

1 2 n

 �
; ð23Þ

where n is the Poisson’s ratio of the matrix. km and mm are

calculated as 3520 and 819 MPa, respectively, from the

properties in Table 2 and the theory of elasticity. kp is taken

as 2000 MPa and, since mp p mm; Eq. (22) can be simplified

to

mblend ¼ mm 1 2
f

1 2 bð1 2 f Þ

 �
: ð24Þ

The Poisson’s ratio and tensile modulus of the blend, Eblend,

are calculated from Eqs. (20) and (24) and the theory of

elasticity.
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